Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Int Urol Nephrol ; 2024 Feb 26.
Article En | MEDLINE | ID: mdl-38407753

BACKGROUND: This study aimed to determine the association between the urinary protein-to-creatinine ratio (UPCR) and chronic kidney disease (CKD) progression in a cohort study, and to determine whether body mass index (BMI) modifies this association. METHODS: The study population consisted of 856 hypertensive patients with CKD stages 2-5, enrolled between 2010 and 2011 in Japan. Generalized linear models with a logit link were used to evaluate the independent and combined effects of the UPCR and BMI on CKD progression RESULTS: During a median follow-up of 25 months, 242 patients developed CKD progression during follow-up. A notably higher risk of CKD progression was found in participants in tertiles 2 [odds ratio (OR): 5.46, 95% confidence interval (95% CI): 2.49-11.99] and 3 (OR 27.74, 95% CI 12.34-62.38) comparing with tertiles 1 for UPCR levels. Moreover, an interaction was found between UPCR and BMI on CKD progression (P for interaction = 0.006). Participants in both the highest tertile of UPCR and overweight (UPCR ≥ 248.9 mg/mmol and BMI ≥ 25 kg/m2) had a 45.59-times higher risk of CKD progression compared with those in the lowest tertile of UPCR and nonoverweight (UPCR < 36.2 mg/mmol and BMI < 25 kg/m2) CONCLUSIONS: The present study demonstrates that the combination of elevated UPCR and BMI may contribute to an increased risk of CKD progression.

2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38279208

The lacrimal gland is responsible for maintaining the health of the ocular surface through the production of tears. However, our understanding of the immune system within the lacrimal gland is currently limited. Therefore, in this study, we utilized single-cell RNA sequencing and bioinformatic analysis to identify and analyze immune cells and molecules present in the lacrimal glands of normal mice. A total of 34,891 cells were obtained from the lacrimal glands of mice and classified into 18 distinct cell clusters using Seurat clustering. Within these cell populations, 26 different immune cell subpopulations were identified, including T cells, innate lymphocytes, macrophages, mast cells, dendritic cells, and B cells. Network analysis revealed complex cell-cell interactions between these immune cells, with particularly significant interactions observed among T cells, macrophages, plasma cells, and dendritic cells. Interestingly, T cells were found to be the main source of ligands for the Thy1 signaling pathway, while M2 macrophages were identified as the primary target of this pathway. Moreover, some of these immune cells were validated using immunohistological techniques. Collectively, these findings highlight the abundance and interactions of immune cells and provide valuable insights into the complexity of the lacrimal gland immune system and its relevance to associated diseases.


Lacrimal Apparatus , Lacrimal Apparatus/pathology , Tears/metabolism , T-Lymphocytes , Lymphocytes , RNA/metabolism
3.
Endocrine ; 82(2): 335-342, 2023 11.
Article En | MEDLINE | ID: mdl-37308773

BACKGROUND: Iodine is an essential element for the biosynthesis of thyroid-stimulating hormone (TSH). Both excessive and deficient iodine are major risk factors for thyroid diseases, including thyroid dysfunction, thyroid nodules, and thyroid autoimmunity (TAI). This study aimed to elucidate the relationship between iodine status and the prevalence of thyroid diseases through a national cross-sectional epidemiological survey in Jiangxi province (China). METHODS: This population-based, cross-sectional study enrolled 2636 Chinese local inhabitants who aged over 18 years old from April to August in 2015. Physical examination was performed and biochemical indices, urinary iodine concentration (UIC), and TSH level were measured. The Chi-square test, nonparametric test, and 4 multivariate logistic regression models adjusted for risk factors were applied to analysis. Spearman correlation coefficients were calculated to investigate the relationship between iodine intake level and the prevalence of thyroid diseases. RESULTS: The median UIC was 176.4 µg/L, and a significant difference was found in median UIC between men (182.45 µg/L) and women (169.25 µg/L) (P = 0.03). Among these study subjects, 14.4%, 44.5%, 26.1%, and 15.0% had deficient, adequate, more than adequate, and excessive iodine concentrations, respectively. The prevalence rates of hyperthyroidism, subclinical hyperthyroidism, hypothyroidism, subclinical hypothyroidism, thyroid nodules, and TAI were 0.91%, 0.57%, 0.34% and 7.89%, 9.45%, and 12.7%, respectively. Significant differences were found in iodine status, waist circumstance, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol (TC), TSH, thyroid nodules, and TAI between men and women (P < 0.05). Compared with those with adequate UIC, subjects with excessive UIC had higher prevalence rates of thyroid dysfunction (odds ratio (OR) = 1.74, 95% confidence interval (CI): 1.40-2.54) and thyroid nodules (OR = 3.33, 95%CI 1.32-8.42). In addition, subjects with deficient and excessive UIC were at the higher risk of TAI compared with those with adequate UIC (OR = 1.68, 95%CI: 1.19-2.60; OR = 1.52, 95%CI: 1.04-2.96, respectively). UIC was positively correlated with the prevalence rates of thyroid nodules (r = -0.44, P < 0.01) and TAI (r = -0.055, P < 0.01). On the contrary, UIC was negatively correlated with the risk of thyroid dysfunction (r = -0.24, P > 0.05). CONCLUSION: Adult inhabitants from Jiangxi province in the TIDE study were in the adequate iodine status. Excessive iodine status was noted as a risk factor for thyroid dysfunction and thyroid nodules. In addition, both iodine deficiency and excessive iodine were risk factors for TAI.


Hyperthyroidism , Hypothyroidism , Iodine , Thyroid Diseases , Thyroid Nodule , Male , Adult , Humans , Female , Middle Aged , Cross-Sectional Studies , Thyroid Nodule/epidemiology , Thyroxine , Prevalence , Thyroid Diseases/epidemiology , Thyroid Diseases/chemically induced , Hypothyroidism/epidemiology , Hypothyroidism/chemically induced , Thyrotropin , China/epidemiology
4.
J Comp Neurol ; 531(1): 149-169, 2023 01.
Article En | MEDLINE | ID: mdl-36222577

The Fragile X mental retardation protein (FMRP) is an mRNA binding protein that is essential for neural circuit assembly and synaptic plasticity. Loss of functional FMRP leads to Fragile X syndrome (FXS), a neurodevelopmental disorder characterized by sensory dysfunction including abnormal auditory processing. While the central mechanisms of FMRP regulation have been studied in the brain, whether FMRP is expressed in the auditory periphery and how it develops and functions remains unknown. In this study, we characterized the spatiotemporal distribution pattern of FMRP immunoreactivity in the inner ear of mice, rats, gerbils, and chickens. Across species, FMRP was expressed in hair cells and supporting cells, with a particularly high level in immature hair cells during the prehearing period. Interestingly, the distribution of cytoplasmic FMRP displayed an age-dependent translocation in hair cells, and this feature was conserved across species. In the auditory ganglion (AG), FMRP immunoreactivity was detected in neuronal cell bodies as well as their peripheral and central processes. Distinct from hair cells, FMRP intensity in AG neurons was high both during development and after maturation. Additionally, FMRP was evident in mature glial cells surrounding AG neurons. Together, these observations demonstrate distinct developmental trajectories across cell types in the auditory periphery. Given the importance of peripheral inputs to the maturation of auditory circuits, these findings implicate involvement of FMRP in inner ear development as well as a potential contribution of periphery FMRP to the generation of auditory dysfunction in FXS.


Ear, Inner , Fragile X Syndrome , Animals , Mice , Rats , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Gerbillinae , Chickens/metabolism , Fragile X Syndrome/genetics , Ear, Inner/metabolism
5.
J Vis Exp ; (185)2022 07 06.
Article En | MEDLINE | ID: mdl-35876562

Fragile X mental retardation protein (FMRP) is an mRNA-binding protein that regulates local protein translation. FMRP loss or dysfunction leads to aberrant neuronal and synaptic activities in fragile X syndrome (FXS), which is characterized by intellectual disability, sensory abnormalities, and social communication problems. Studies of FMRP function and FXS pathogenesis have primarily been conducted with Fmr1 (the gene encoding FMRP) knockout in transgenic animals. Here we report an in vivo method for determining the cell-autonomous function of FMRP during the period of circuit assembly and synaptic formation using chicken embryos. This method employs stage-, site-, and direction-specific electroporation of a drug-inducible vector system containing Fmr1 small hairpin RNA (shRNA) and an EGFP reporter. With this method, we achieved selective FMRP knockdown in the auditory ganglion (AG) and in one of its brainstem targets, the nucleus magnocellularis (NM), thus providing a component-specific manipulation within the AG-NM circuit. Additionally, the mosaic pattern of the transfection allows within-animal controls and neighboring neuron/fiber comparisons for enhanced reliability and sensitivity in data analyzing. The inducible vector system provides temporal control of gene editing onset to minimize accumulating developmental effects. The combination of these strategies provides an innovative tool to dissect the cell-autonomous function of FMRP in synaptic and circuit development.


Fragile X Mental Retardation Protein , Fragile X Syndrome , Animals , Chick Embryo , Electroporation , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Mice , Mice, Knockout , Neurons/metabolism , Reproducibility of Results
6.
Front Neurol ; 13: 801696, 2022.
Article En | MEDLINE | ID: mdl-35222244

BACKGROUND: While emerging studies have suggested an association of cardiorespiratory fitness (CRF) with stroke risk and overall health outcomes, little is known regarding the optimum methods of CRF measurement in patients with mild acute ischemic stroke. OBJECTIVE: The aim of this study was to explore the association between the 6-min walk distance (6MWD) and other measurements related to CRF in patients with mild ischemic stroke at the acute stage. METHODS: A total of 30 patients with stroke and 71 healthy subjects matched for age and grip strength (GS) were prospectively recruited. All patients were within 14 days after stroke onset and presented mild motor impairment (with a full score of Fugl-Meyer Motor Assessment). Demographic data of both groups and clinical information of the stroke group were documented, and the CRF comparison between the two groups was conducted. Each participant underwent a one-time assessment of 6MWD and a series of measurements related to CRF, including GS, 10-m walk test (10mWT), five-times sit-to-stand time (FTSST), functional reaching test (FRT), Berg Balance Scale (BBS), and waistline. Pearson's product-moment correlation coefficient test and multiple linear regression were performed to explore the indicators of CRF. RESULTS: Significant moderate correlations (0.3 < r <0.6) were found between 6MWD and GS of left hand (GS-left) (r = 0.573, p = 0.001), GS of right hand (GS-right) (r = 0.524, p = 0.003), FTSST (r = -0.551, p = 0.002), 10mWT (r = 0.554, p = 0.001), and FRT (r = 0.449, p = 0.021) in the patient group. While 6MWD displayed significant moderate correlations with waistline (r = 0.364, p = 0.002), 10mWT (r = 0.512, p < 0.001), FTSST (r = -0.573, p < 0.001), and FRT (r = 0.550, p < 0.001) in the healthy group. All these dependent variables were entered into a stepwise multiple linear regression analysis to evaluate their values in estimating CRF as measured by 6MWD in each group. Analyses suggested that GS-left (p = 0.002) and FTSST (p = 0.003) were the indicators of CRF in the patient group with stroke and explained 51.4% of the variance of 6MWD (R 2 = 0.514); FTSST (p < 0.001), 10mWT (p < 0.001), and FRT (p = 0.021) were the indicators of CRF in the healthy group and explained 58.9% of variance of 6MWD (R 2 = 0.589). CONCLUSIONS: Our data confirmed that CRF is impaired in patients with mild ischemic stroke at the acute phase. Moreover, GS-left may be an optional indicator of CRF in patients with mild acute ischemic stroke, but not in healthy people. CLINICAL TRIAL REGISTRATION: www.chictr.org.cn, identifier: ChiCTR2000031379.

7.
Front Neurol ; 13: 1074521, 2022.
Article En | MEDLINE | ID: mdl-36712424

Introduction: To investigate the effect of exercise on the walking economy (WE) of patients with chronic neurological conditions (CNCs) and to determine the type of physical activity that best improves the WE of patients with CNCs. Methods: Four electronic databases were searched until December 2022 (Web of Science, PubMed, Cochrane, and CINAHL). Studies were screened using the following inclusion criteria: 1. randomized controlled or non-randomized controlled trials; 2. exercise interventions >4 weeks in duration; 3. patients aged ≥18 years with a diagnosis of CNCs. 4. walking economy of patients measured before and after the intervention. The PEDro scale was used to assess the methodological quality of the included studies. Results and discussion: Twenty-two studies met the inclusion criteria. Meta-analysis results showed that exercise significantly improved WE (g = -0.352, 95% CI, -0.625 to -0.078, P = 0.012). Subgroup analysis revealed that patients who received exercise showed better WE compared with those who underwent no control intervention (g = -0.474, 95% CI, -0.636 to -0.311, P < 0.001). However, exercise therapy did not show a significant improvement of WE compared with control groups (g = -0.192, 95% CI, -0.451 to 0.067, P = 0.146). In addition, we found that endurance combined with resistance, high-intensity intermittent, and other training modalities resulted in better WE compared with the pre-intervention. Of these, interval training has the greatest effect on improving WE. In conclusion, exercise can improve WE in patients with CNCs. More randomized controlled trials are necessary for the future. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022361455, identifier: CRD42022361455.

8.
J Orthop Translat ; 31: 52-61, 2021 Nov.
Article En | MEDLINE | ID: mdl-34934622

BACKGROUND: Diabetes mellitus could cause numerous complications and health problems including abnormality of endochondral bone formation during embryogenesis. However, the underlying mechanisms still remain obscure. METHODS: Streptozotoci (STZ) was injected to induce pregestational diabetes mellitus (PGDM) mouse model. The femurs of E18.5 mouse embryos from control and PGDM groups were harvested. Morphological staining was implemented to determine the abnormality of the bone development. The expressions of the key genes participating in osteogenesis (e.g., Sox9, Runx2, and Osterix), the NF-κB signaling molecules (e.g., P50, P65, IκBα), and the corresponding regulatory factors (e.g., Bmp2, phospho-p38) were evaluated by immunofluorescence, quantitative PCR and western blot. Finally, in vitro chondrocyte differentiation model was employed to verify the role of NF-κB on the expressions of chondro-osteogenic markers. RESULTS: Alcian blue/alizarin red double staining and H&E staining demonstrated the restriction of skeletal development and relatively extended hypertrophic zone at growth plate in E18.5 STZ-induced diabetic mouse embryos compared to the control. Immunofluorescent staining and qPCR showed that Sox9 expression increased, while Runx2 and Osterix expressions decreased in the growth plate of the offspring of PGDM mice. Immunofluorescence of P65 manifested the activation of NF-κB signaling in growth plate in PGDM mouse embryos. Furthermore, the relatively extended hypertrophic zone was also observed in the growth plate of the NF-κB-activated transgenic mice, as well as the activated p65 up-regulated the expression of Bmp2 and p-p38. In ATDC5 cells, we could observe the high glucose up-regulated the P50 and P65 expressions and down-regulated IκBα expression, but the high glucose-activated NF-κB signaling could be reversed by addition of Bay (inhibitor of NF-κB signaling). The expression changes of Bmp2, Sox9 and Runx2 in presence of high glucose were resumed too. CONCLUSION: Our data revealed that NF-κB signaling was involved in mediation effects of dysfunctional trans-differentiation of hypertrophic chondrocytes in the embryonic growth plate induced by maternal diabetic mellitus.

9.
IUBMB Life ; 72(12): 2651-2662, 2020 12.
Article En | MEDLINE | ID: mdl-33107695

Diabetic nephropathy (DN) is the primary reason of chronic kidney disease. The aim of our study is to explore the role and action mechanism of M2 macrophage-derived exosomes in high glucose (HG)-induced podocytes injury. Here, 30 mmol/L of HG was used to induce podocytes injury. Annexin V-FITC/PI double staining was performed to measure podocytes apoptosis, and western blot was carried out to ensure proteins expression. The shape of exosomes was identified using TEM. Besides, the expression of miR-25-3p was determined by qRT-PCR, FAM-labeled miR-25-5p combined with DiI-labeled exosomes were utilized to explore the uptake of podocytes to exosomes. Relationship between miR-25-3p and DUSP family members was ensued by luciferase activity assay. In the beginning, we found that M2 macrophage ameliorated HG-induced podocytes apoptosis and epithelial-mesenchymal transition through secreting exosomes. Subsequently, highly expressed miR-25-3p was found in M2 macrophage-derived exosomes that effectively improved HG-induced podocytes injury. Furthermore, inhibition of miR-25-3p in M2 macrophage inefficiently repressed HG-induced podocytes injury, thus we proposed that M2 macrophage attenuated podocytes injury through secreting exosomal miR-25-3p. Then, we used an autophagy inhibitor to stimulate podocytes, and demonstrated that M2 macrophage-derived exosomal miR-25-3p improved HG-induced podocytes injury through activating autophagy. Finally, DUSP1 was proved to be a downstream target and mediated the inhibition of exosomal miR-25-3p to HG-induced podocytes injury. Our results indicated that M2 macrophage could improve HG-induced podocytes injury via secreting exosomal miR-25-3p to activate autophagy of the cells through suppressing DUSP1 expression. We proved a newly potential therapy strategy for DN treatment.


Autophagy , Dual Specificity Phosphatase 1/metabolism , Exosomes/metabolism , Glucose/toxicity , Macrophages/metabolism , MicroRNAs/administration & dosage , Podocytes/drug effects , Animals , Dual Specificity Phosphatase 1/genetics , Gene Expression Regulation , Mice , MicroRNAs/genetics , Podocytes/metabolism , Podocytes/pathology
...